
Unit testing
Using NST
Inside NST
Conclusion

NST: A Unit Test Framework for Common Lisp

John Maraist

Smart Information Flow Technologies (SIFT, LLC)

TC-lispers, June 9, 2009

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Outline

1 Unit testing
2 Using NST

Fixtures
Test groups
Tests
Criteria
Customizing criteria

3 Inside NST
The basic idea
Early implementations, and other lessons
How it maybe should work

4 Conclusion

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

What is unit testing?

From wikipedia:

Unit testing is a software verification and validation
method where the programmer gains confidence that
individual units of source code are fit for use.

“Unit” refers to the basic elements of program design —
procedures, functions, classes, etc.
Unit tests should be independant of each other.
Typically written by the programmer.
Also usable as regression tests.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Basic concepts

Fixtures
Named data values to which we apply tests.

Groups
Collections of tests.

Tests
One application of a criterion to values, usually to fixtures.

Criteria
Named process of verification.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

A simple NST example

Define two fixtures.

(def-fixtures simple-fixture
(:documentation "Define two bindings")

(magic-number 120)
(magic-symbol ’asdfg))

(def-test-group simple-test-group
(simple-fixtures)

(def-test has-num
(:eql magic-number)

(factorial 5))
(def-test has-sym

(:eq magic-symbol)
’asdfh))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

A simple NST example

Define a group of tests.

(def-fixtures simple-fixture
(:documentation "Define two bindings")

(magic-number 120)
(magic-symbol ’asdfg))

(def-test-group simple-test-group
(simple-fixtures)

(def-test has-num
(:eql magic-number)

(factorial 5))
(def-test has-sym

(:eq magic-symbol)
’asdfh))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

A simple NST example

The groups’ tests are given the two fixtures.

(def-fixtures simple-fixture
(:documentation "Define two bindings")

(magic-number 120)
(magic-symbol ’asdfg))

(def-test-group simple-test-group
(simple-fixtures)

(def-test has-num
(:eql magic-number)

(factorial 5))
(def-test has-sym

(:eq magic-symbol)
’asdfh))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

A simple NST example

Test names.

(def-fixtures simple-fixture
(:documentation "Define two bindings")

(magic-number 120)
(magic-symbol ’asdfg))

(def-test-group simple-test-group
(simple-fixtures)

(def-test has-num
(:eql magic-number)

(factorial 5))
(def-test has-sym

(:eq magic-symbol)
’asdfh))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

A simple NST example

Test criteria.

(def-fixtures simple-fixture
(:documentation "Define two bindings")

(magic-number 120)
(magic-symbol ’asdfg))

(def-test-group simple-test-group
(simple-fixtures)

(def-test has-num
(:eql magic-number)

(factorial 5))
(def-test has-sym

(:eq magic-symbol)
’asdfh))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

A simple NST example

Forms to be tested.

(def-fixtures simple-fixture
(:documentation "Define two bindings")

(magic-number 120)
(magic-symbol ’asdfg))

(def-test-group simple-test-group
(simple-fixtures)

(def-test has-num
(:eql magic-number)

(factorial 5))
(def-test has-sym

(:eq magic-symbol)
’asdfh))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

A simple NST example

This test passes.

(def-fixtures simple-fixture
(:documentation "Define two bindings")

(magic-number 120)
(magic-symbol ’asdfg))

(def-test-group simple-test-group
(simple-fixtures)

(def-test has-num
(:eql magic-number)

(factorial 5))
(def-test has-sym

(:eq magic-symbol)
’asdfh))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

A simple NST example

This test fails.

(def-fixtures simple-fixture
(:documentation "Define two bindings")

(magic-number 120)
(magic-symbol ’asdfg))

(def-test-group simple-test-group
(simple-fixtures)

(def-test has-num
(:eql magic-number)

(factorial 5))
(def-test has-sym

(:eq magic-symbol)
’asdfh))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Fixtures

(def-fixtures FIXTURE-NAME
([:uses USES]

[:assumes ASSUMES]
[:inner INNER]
[:documentation DOCUMENTATION])

(NAME FORM)
(NAME FORM)
...

(NAME FORM))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Fixtures and free variables

Keyword argument :assumes
Names the variables occurring free in the fixture bodies.
(def-fixtures derived-fixtures-1

(:assumes (magic-number))
(magic-bonus (* 6 magic-number)))

Keyword argument :uses
Names the other fixture sets whose bound names occur
free in these fixtures bodies.
(def-fixtures derived-fixtures-2

(:uses (simple-fixtures))
(magic-bonus (* 6 magic-number)))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Fixtures and declarations

Keyword argument :inner
Provides additional declarations for fixture bodies.
(def-fixtures internal-magic

(:inner ((special magic-internal-state)))
(state-head (car magic-internal-state))
(state-snd (cadr magic-internal-state)))

Should be renamed :declare

Keyword argument :outer
Ignored — useless hangover from an earlier design.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Test groups

(def-test-group NAME (FIXTURE · · · FIXTURE)
[(:setup FORM FORM · · · FORM)]
[(:cleanup FORM FORM · · · FORM)]
[(:each-setup FORM FORM · · · FORM)]
[(:each-cleanup FORM FORM · · · FORM)]
TEST
TEST
...
TEST)

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Setup and cleanup forms

(def-test-group show-setup ()
(:setup (write " S group"))
(:cleanup (write " C group"))
(:each-setup
(write " S-each group"))

(:each-cleanup
(write " C-each group"))

(def-check ts1 :pass
(write " ts1"))

(def-check ts2 :pass
(write " ts2")))

Running group show-setup
S group
S-each group
ts1
C-each group
S-each group
ts2
C-each group

C group
Group show-setup:

2 of 2 passed

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Tests and groups

(def-test (NAME [:setup FORM]
[:cleanup FORM]
[:fixtures (FXTR ... FXTR)])

criterion
FORM)

(def-test NAME
criterion

FORM)

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Fixtures for individual tests

(def-fixtures simple-fixture ()
(magic-number 120)
(magic-symbol ’asdfg))

(def-test-group some-magic ()
(def-test no-magic :true
(not (boundp ’magic-number)))

(def-test (with-magic
:fixtures (simple-fixture))

(:eql 120)
magic-number))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Setup, cleanup on individual tests

(defparameter for-setup 0)

(def-test-group setup-cleanup ()
(:setup (setf for-setup 1))
(:cleanup (setf for-setup 0))
(def-test a-sc-for-setup-1 (:eql 1) for-setup)
(def-test (sc-for-setup-2

:setup (setf for-setup 2)
:cleanup (setf for-setup 1))

(:eql 2)
for-setup)

(def-test z-sc-for-setup-1 (:eql 1) for-setup))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Setup, cleanup on individual tests

Recently noticed bug: each-setup for the group and setup
for the test are not applied in the order we’d hope.

(def-test-group each-setup-cleanup ()
(:each-setup (setf for-setup 2))
(:each-cleanup (setf for-setup 0))
(def-test (sc-for-setup-2

:setup (setf for-setup 3)
:cleanup (setf for-setup 2))

(:info "This is a known bug" (:eql 3))
for-setup))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Equality criteria

(def-test eql1 (:eql 2)
(cadr ’(1 2 3)))

(def-test eq1 (:eq ’a)
(car ’(a 3 c)))

And similarly for equal and equalp.

(def-test sym1 (:symbol a)
(car ’(a b c)))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Predicates and transformations

Boolean-valued functions can be used as test criteria:

(def-test pred1 (:predicate numberp) 3)

Forms can be altered before testing:

(def-test applycheck
(:apply cadr (:eql 10))

’(0 10 20))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

List criteria

Expect every element of a list to pass a criterion:

(def-test each1 (:each (:predicate evenp))
’(2 4 8 20 100))

Apply different criteria to respective elements:

(def-check seqcheck
(:seq (:predicate symbolp)

(:eql 1)
(:symbol d))

’(a 1 d))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Information and warnings

Additional information for results:

(def-test known-bug
(:info "Known bug" (:eql 3))

4)

Passing with a warning:

(def-test known-bug
(:warn "~d is not a perfect square" 5)

5)

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Compound criteria

Negating another criterion:

(def-test not1 (:not (:symbol b)) ’a)

Passing all of a set of criteria:

(def-check not1 ()
(:all (:predicate even-p)

(:predicate prime-p))
2)

And similarly, :any for at least one of a set of criteria.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Let’s argue about multiple values!

In Lisp:
Functions can return multiple values.
But paying attention to the “extras” is optional.
Accessing “extras” takes a little extra effort.

In NST:
Even if they’re ingorable, extra values must be correctly
implemented.
So when validating a function, NST expects all values to be
accessed (and presumably validated).
Ignoring “extras” takes a little extra effort.
A mismatch between the received and expected values is
an error.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Let’s argue about multiple values!

In Lisp:
Functions can return multiple values.
But paying attention to the “extras” is optional.
Accessing “extras” takes a little extra effort.

In NST:
Even if they’re ingorable, extra values must be correctly
implemented.
So when validating a function, NST expects all values to be
accessed (and presumably validated).
Ignoring “extras” takes a little extra effort.
A mismatch between the received and expected values is
an error.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Criteria for multiple values

Applying different criteria to respective values:

(def-test values1 (:values (:symbol a) (:eq ’b))
(values ’a ’b))

Treating values as a list:

(def-test value-list1
(:value-list (:seq (:symbol a) (:eq ’b)))

(values ’a ’b))

Dropping extra values:

(def-test no-values1 (:drop-values (:symbol a))
(values ’a ’b ’c))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Multiple-values and multiple-argument predicates

Multiple values are handled as additional arguments to the
functions underlying criteria:

(def-test tricky-1 :eql
(round 5 4))

(def-test values-drop1
(:apply (lambda (x y)

(declare (ignorable y))
x)

(:symbol a))
(values ’a ’b))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Other criteria

For a full list of criteria, see the manual.
Additional basic checks.
:err — expecting an error.
:permute — list permutation.
Simple checks for vectors, slots.
:perf — timing form evaluation.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Defining new criteria

NST provides three macro-style mechanisms for defining a new
criterion:

By describing how it translates to another criterion.
By describing how it maps values to a results expression.
By describing how it maps a form (which would evaluate to
a list of values) to a results expression.

In fact, all of the built-in criteria use one of these three
mechanisms.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Defining new criteria

By translation:
(def-criterion-alias (:symbol name)

‘(:eq ’,name))
(def-criterion-alias (:drop-values criterion)

‘(:apply (lambda (x &rest others)
(declare (ignorable others))
x)

,criterion))

By a map from values to a results expression: :true,
:eql, :predicate, :info.
By a map from a form to a results expression: :not,
:perf, :err.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Running NST

From the REPL. NST provides a command-line interface
for running tests and inspecting results, with top-level
aliases for some supported Lisps.
:nst :help

From ASDF. NST provides an ASDF system class,
providing automatic test-op methods.
Output via JUnit. NST can generate JUnit-compatible
XML for GUI browsing of results.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Running NST

From the REPL. NST provides a command-line interface
for running tests and inspecting results, with top-level
aliases for some supported Lisps.
:nst :help

From ASDF. NST provides an ASDF system class,
providing automatic test-op methods.
Output via JUnit. NST can generate JUnit-compatible
XML for GUI browsing of results.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Fixtures
Test groups
Tests
Criteria
Customizing criteria
Running NST

Running NST

From the REPL. NST provides a command-line interface
for running tests and inspecting results, with top-level
aliases for some supported Lisps.
:nst :help

From ASDF. NST provides an ASDF system class,
providing automatic test-op methods.
Output via JUnit. NST can generate JUnit-compatible
XML for GUI browsing of results.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

A little bit of background

A number of Lisp language features greatly simplified writing
NST.

Macros.
Compile-time code execution.
Multiple inheritance.
Sophisticated method dispatch.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

Macros

The top-level NST forms all defined by macros:
Components not evaluated, but rewritten into other forms
which (may be) evaluated.
The typical Lisp way of writing language extensions.
Allows a direct specification of the test.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

Compile-time code execution

Part of the macro-expansion of tests involves translating criteria
into Lisp code.

Criteria definitions expand to method definitions.
So macro-expanding tests involves running Lisp at
compile-time.
Moreover, the required routines may be found in the same
code file as the tests they help to expend.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

Multiple inheritance

Lisp classes may have more than one superclass, and
moreover may inherit method implementations from different
superclass hierarchies.

Unlike e.g. Java, where all but one superclass hierarchies
may define only abstract methods.

NST uses multiple inheritance for fixture application.
Fixtures, groups and tests all translate to classes.
Fixtures make their bindings via methods of their class.
Groups’ and tests’ classes are subclasses of the classes
corresponding to the fixtures they apply.
So they inherit the fixture-binding methods.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

Dynamic variable scope

Lisp offers both dynamic and static scoping for local variables.
Determine the rules as to how we know what value-binding
a program variable should have.
If this idea is new to you, then you’re probably used to
static scope rules.
Simple dynamic scoping example:

(defun print-x ()
(declare (special x))
(write x))

(defun x-as-3 ()
(let ((x 3))

(declare (special x))
(print-x)))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

Method dispatch

Lisp has a very rich notion of method dispatch.
Typically, dispatch chooses exactly one method for a
particular object.
In Lisp, there are many available method combinations to
map a method invocation to some assemblage of the
corresponding method definitions.

“Standard” principle method override.
“Around” methods wrap other methods.
“Before” and “after” methods.
Sequential execution of several methods, and various ways
of combining their results.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

Around-methods

Used with dynamic scoping rules for fixture definitions:

(def-fixtures simple-fixture ()
(magic-number 120) (magic-symbol ’asdfg))

becomes something like:

(defmethod run-group :around ((gr simple-fixtures))
(let ((magic-number 120) (magic-symbol ’asdfg))

(declare (special magic-number magic-symbol))
(call-next-method)))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

Before- and after-methods

Used for :setup and :cleanup arguments:

(def-test (sc :setup (setf for-setup 2)
:cleanup (setf for-setup 1))

(:eql 2)
for-setup)

becomes, in part, something like:

(defmethod run-test :before ((test sc))
(setf for-setup 2))

(defmethod run-test :after ((test sc))
(setf for-setup 1))

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

Fwrappers

Fwrappers are a Allegro Common Lisp feature.
Like an around-method for non-generic functions.
Useful for extending third-party code, etc.
But for code we’re writing ourselves, no clear advantage
over around-methods.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

Gensym abuse

In one version, NST solved potential name conflicts by naming
almost all intermediate structures via gensym.

Very effective at avoiding accidental name conflicts.
Very secure against interference with testing internals.
Very secure against debugging.
Very secure against examination and understanding.
Very secure against extension.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

Gensym abuse

In one version, NST solved potential name conflicts by naming
almost all intermediate structures via gensym.

Very effective at avoiding accidental name conflicts.
Very secure against interference with testing internals.
Very secure against debugging.
Very secure against examination and understanding.
Very secure against extension.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

Gensym abuse

In one version, NST solved potential name conflicts by naming
almost all intermediate structures via gensym.

Very effective at avoiding accidental name conflicts.
Very secure against interference with testing internals.
Very secure against debugging.
Very secure against examination and understanding.
Very secure against extension.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

Static class data

NST must be able to retrieve information associated with
fixtures, groups and tests.

We compile fixtures, groups and tests to classes.
We’d prefer this information to be available statically, with
reference to the class but without necessarily referencing a
particular object.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

Static class data

With :static allocation for class slots, accessors still require
an object instance.

(defclass zz () ((aa :allocation :class
:accessor zz-aa)))

(setf z1 (make-instance ’zz)
z2 (make-instance ’zz))

(setf (zz-aa z1) 5)
(pprint (zz-aa z1)) ;; displays 5
(pprint (zz-aa z2)) ;; displays 5
(setf (zz-aa z2) 6)
(pprint (zz-aa z1)) ;; displays 6

We’d like a way to store & retrieve class data without an object
instance.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

Class metaobjects for static class data

One approach we tried was via the metaclass.
Lisp models a program’s structures via standardized Lisp
objects.
By default, the definition of a class is stored in an instance
of standard-class.
But we can extend standard-class, and include static
data as fields in the metaclass.

(defclass mzz (standard-class)
((aaa :accessor zzz-aaa)))

(defclass zz () ()
(:metaclass mzz))

(setf (zzz-aaa (find-class ’zz)) 5)

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

Prefer object prototypes

We later discovered the preferred style of using class
prototypes.

(defclass zz () ((aa :allocation :class
:accessor zz-aa)))

(mop:finalize-inheritance (find-class ’zz))
(defun aa ()

(zz-aa (class-prototype (find-class ’zz))))
(defun set-zz-aa (x)

(setf (zz-aa (mop:class-prototype
(find-class ’zz)))

x)
x)

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

NST internal packages

Fixtures correspond to two classes:
One with methods for applying fixtures to a group once.
One with methods for applying fixtures individually to each
test within a group.

Right now, we create a name for this class.

(def-fixtures pkg::gname |# ... |#

becomes (in part) something like

(defclass nst-fixture-test-class-names::pkg///gname
() ())

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

Package abuse?

We would not need special packages for internal class names if
the classes simply didn’t have names.

By using MOP function calls directly (as opposed to
defclass) one can create anonymous classes.
The internal classes themselves can be made available as
static information of the reference class.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

A MOP-like model

Not just macros, but also functions.
À la defclass and ensure-class.
Also suggests: multiple “front-ends” (macros) translating to
the single backend.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

Error reporting

Is there actually any programming tool where “improve error
messages” is not on the to-do list?

Errors arising from bad use of criteria (such as treating a
list with a vector criterion) are not clearly marked as testing
errors, rather than test failures.
General difficulty in good error analysis.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

QuickCheck

QuickCheck originated in Haskell as a framework for generating
randomized tests of programmer-stated program invariants.

(equal (reverse (reverse x)) x)

(if (< x y) (eql (max x y) y))

Some version of QuickCheck might be useful in NST.
Side-effects
Cannot rely on types for direction.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

The basic idea
Early implementations, and other lessons
How it maybe should work

Further integration

Better control of NST options through ASDF.
Automated XML/JUnit output.
Other output formats.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

If you want to really learn Lisp...

Writing a unit tester is an effective way to see many interesting
areas of Lisp!

Subtle macro authoring.
Evaluation-time issues.
Under the hood of the class system.

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Is this actually unit testing?

Returning to wikipedia’s definition of unit testing:
A unit is the smallest testable part of an application. In
procedural programming a unit may be an individual
program, function, procedure, etc., while in object-oriented
programming, the smallest unit is a class, which may
belong to a base/super class, abstract class or derived/child
class.
Is our unit the expression?
Is there a more natural way to structure tests around the
unit of a function?
Lisp is also object-oriented — should a Lisp unit test
package offer a more natural framework for classes and
methods?

John Maraist NST: A Unit Test Framework for Common Lisp

Unit testing
Using NST
Inside NST
Conclusion

Proof in the practicality

Future directions aside, we believe that NST is now, already, a
useful tool.

Has been used on several large projects already.
The SHOP2 planner.
A plan recognizer.
Language interpreter.
Security software.

Reasonable mature and solid.
Actively maintained.
Open-sourced.

John Maraist NST: A Unit Test Framework for Common Lisp

	Unit testing
	Using NST
	Fixtures
	Test groups
	Tests
	Criteria
	Customizing criteria
	

	Inside NST
	The basic idea
	Early implementations, and other lessons
	How it maybe should work

	Conclusion

