
Introduction
CL Solutions

Web Browser as GUI
Conclusion

Lisp GUIs
or “Bloodied but Unbowed”

Robert P. Goldman

TC Lispers

2009-08-18 Tue

Robert P. Goldman Lisp GUIs



Introduction
CL Solutions

Web Browser as GUI
Conclusion

Introduction

Every now and then I have to write code for someone who
doesn’t realize inferior lisp mode in emacs is a GUI.

This is a classic Phil Agre hassle: “hassles, which are small bits
of trouble that recur frequently in routine patterns of activity.”

I have tried three solutions, only one of which works
satisfactorily:

1 Use a pure CL solution:
CLIM (McCLIM, specifically)
Garnet

2 Use a web browser as the GUI, employing AJAX;
3 Have someone else write a GUI that will use my CL program

as a server.

There’s one that doesn’t work at all: FFI to another
language’s GUI package.

Here’s a bit about each of these.

Robert P. Goldman Lisp GUIs



Introduction
CL Solutions

Web Browser as GUI
Conclusion

Other Languages’ UI Toolkits

Why don’t you just use this toolkit implemented in this
language?

this language = Java:

No portable link to Java.

this language = C++

C++ FFI is a big pain
To know the package (e.g., Qt) you need to know about how
the horrible C++ class system works

These frameworks are dismayingly static.

REPL is critical for GUI programming.
Libraries typically have boatloads of parameters and are fussy
about them.

Robert P. Goldman Lisp GUIs



Introduction
CL Solutions

Web Browser as GUI
Conclusion

CLIM
Garnet

CLIM: Common Lisp Interface Manager

The Good

All CL solution.

PRESENT and ACCEPT.
PRESENT arbitrary Lisp
data structures.
Whenever you need
input of a particular
type, just ACCEPT it
from everywhere on the
display.

Multiple backends.

The Bad

UIs that feel unnatural to
users. Gadgets versus
PRESENT and ACCEPT.

Huge learning curve,
crummy documentation.

McCLIM (open source
CLIM) is unpredictably
unfinished.

The API is huge, so
making it work is
daunting.

Robert P. Goldman Lisp GUIs



Introduction
CL Solutions

Web Browser as GUI
Conclusion

CLIM
Garnet

Garnet: Constraint-based UI development

The Good

All CL solution.

Constraint-based layout.

Huge set of built-in
components.

Natural feeling UIs.

Brilliant documentation.

Great for building novel
UI components.

The Bad

Huge learning curve: built
on prototype-based object
system.

Back-end has bitrotted —
X has moved while Garnet
has been static.

No non-X backend.

Default look and feel is
ugly (but this is readily
fixable).

Robert P. Goldman Lisp GUIs



Introduction
CL Solutions

Web Browser as GUI
Conclusion

Using Web Browsers as GUI

What do you do if you:

Don’t really know or love C++ or Java;

Want a cross-platform GUI;

Want a repl-style development framework;

Want a rich set of widgets that are reasonably native-looking?

Use the browser!

Robert P. Goldman Lisp GUIs



Introduction
CL Solutions

Web Browser as GUI
Conclusion

Preliminary Lessons Learned

Build your lisp program as a web server. There are a plethora
of server frameworks.

Use AJAX-style client-server interactions.

Plenty of libraries for XML and JSON serialization from CL.
Use JSON instead of XML. I learned the hard way.

Consider going native and programming Mozilla:

Evade the sandbox;
Cross-browser compatibility is a horror;
Get a richer set of widgets.

Still can be ugly:

Still a horrific learning curve;
JavaScript can be cumbersome (get a good library!);
JS debugging and repl use is still cumbersome.

Robert P. Goldman Lisp GUIs



Introduction
CL Solutions

Web Browser as GUI
Conclusion

Got anything better?

Robert P. Goldman Lisp GUIs


	Introduction
	CL Solutions
	CLIM
	Garnet

	Web Browser as GUI
	Conclusion

