
Introduction
AllegroServe
Web actions
Conclusion

AllegroServe and WebActions
An Idiosyncratic and Unsystematic Introduction

Robert P. Goldman

TC Lispers

2010-04-26 Mon

Robert P. Goldman AllegroServe and WebActions



Introduction
AllegroServe
Web actions
Conclusion

Introduction

For lack of a better candidate, you get me talking about
Franz’s AllegroServe and Web actions.

AllegroServe is a full web server written in Common Lisp.

AllegroServe is supposedly usable from other Common Lisp
implementations. I have not tried this.

Web actions is a dynamic web site bag of tricks.

I am not a reliable guide!

I have not tried other frameworks.
I don’t build real web applications (yet, at least).
I am very comfortable using ACL and like the environment a
lot.

Robert P. Goldman AllegroServe and WebActions



Introduction
AllegroServe
Web actions
Conclusion

AllegroServe

Multi-threaded web server (using Franz’s concurrency
features).

Provides facilities for on-the-fly creation of web content using
CL macros for HTML generation.

Fairly basic set of facilities for doing richer web applications
(but see web actions later on).

Seems to me hugely preferable to wrestling with Apache!

Caution: probably could get yourself in a lot of trouble, as far
as security is concerned (but that’s always true with the web).

Robert P. Goldman AllegroServe and WebActions



Introduction
AllegroServe
Web actions
Conclusion

Setting up a simple web-site

(require :aserve)
(net.aserve:publish-file
:file "home:personal-web-page;index.html"
:path "/rpg/index.html")
=> #<NET.ASERVE::FILE-ENTITY @ #x1000e45ba2>

(net.aserve:start :port 8000) =>
#<NET.ASERVE:WSERVER port 8000 @ #x10010cb972>

...shows me without my silly picture...

(net.aserve:publish-file
:file "home:personal-web-page;rpg.jpg"
:path "/rpg/rpg.jpg")

...picture too...

Robert P. Goldman AllegroServe and WebActions



Introduction
AllegroServe
Web actions
Conclusion

Setting up a simple web-site

(require :aserve)
(net.aserve:publish-file
:file "home:personal-web-page;index.html"
:path "/rpg/index.html")
=> #<NET.ASERVE::FILE-ENTITY @ #x1000e45ba2>

(net.aserve:start :port 8000) =>
#<NET.ASERVE:WSERVER port 8000 @ #x10010cb972>

...shows me without my silly picture...

(net.aserve:publish-file
:file "home:personal-web-page;rpg.jpg"
:path "/rpg/rpg.jpg")

...picture too...
Robert P. Goldman AllegroServe and WebActions



Introduction
AllegroServe
Web actions
Conclusion

Way easier

(net.aserve:publish-directory
:prefix "/website"
:destination "/Users/rpg/personal-web-page/")

;; logical pathnames don’t work :-(

Supports access controls (specified in s-expressions!), HTTPS,
cgi-bin, and other things we expect from a web server.

XML-RPC server and client libraries.

Robert P. Goldman AllegroServe and WebActions



Introduction
AllegroServe
Web actions
Conclusion

Computed pages with s-expressions for HTML

(defpackage webex
(:use common-lisp net.aserve net.html.generator))
(in-package :webex)
(publish
:path "/rpg/page.html"
:content-type "text/html"
:function #’(lambda (req ent)

(with-http-response (req ent)
(with-http-body (req ent)
(html
(:p "Hello World!"))))))

html macro lets us write HTML in lisp syntax.

Robert P. Goldman AllegroServe and WebActions



Introduction
AllegroServe
Web actions
Conclusion

Web applications

AllegroServe provides (relatively) convenient query argument
handling.

request-query and request-query-value accessors for
HTTP request objects.

With this, build web pages that submit forms and other inputs
for the in response to which the server computes new values
in pages.

Easy to build session objects on top of these accessors, for
longer-term web applications.

By generating pages with XML in them instead of HTML, can
build AJAX applications that have richer interactions, don’t
block like conventional pages.

Robert P. Goldman AllegroServe and WebActions



Introduction
AllegroServe
Web actions
Conclusion

Advantages of AllegroServe

You don’t have to learn how to use Apache.

Easy hot patch of running application.

Excellent debugging of running web requests through emacs
lisp interface.

Turn on the debugger, interact with it while probing the web
server with input that triggers an error, trap and find the
error, fix it, recompile a bit of the lisp and keep going. No
down time!

Robert P. Goldman AllegroServe and WebActions



Introduction
AllegroServe
Web actions
Conclusion

Rationale for web actions
(conjectured by me)

The building blocks above are too rudimentary for easy
construction of a web application.

I have done this a couple of times and there’s too much
boilerplate of sessions to be managed, it doesn’t capture the
flow of the application, etc.

Franz’s web actions address these limitations.

Robert P. Goldman AllegroServe and WebActions



Introduction
AllegroServe
Web actions
Conclusion

Web actions features

Web page templates;

Session tracking;

Application flow.

Robert P. Goldman AllegroServe and WebActions



Introduction
AllegroServe
Web actions
Conclusion

Web page templates

AllegroServe can serve up normal HTML pages, or
lisp-generated pages that contain HTML.

Not convenient for pages that are mostly HTML and best
generated by HTML tools, but with bits that are
programmatically generated.

Web actions adds Common Lisp Server pages. HTML pages
that can have bits of CL included that are interpreted on the
server side.

Define clp functions that are interpreted and interpolated
before a page is served.
Like PHP, only it’s lisp.

Robert P. Goldman AllegroServe and WebActions



Introduction
AllegroServe
Web actions
Conclusion

Session tracking

Solves a problem left by AllegroServe:

Need to write code to track a session, typically by passing a
magic number back and forth.
Need to associate information with a session.
Need to do this task without introducing errors or security
holes.

Can cause a web actions project to do session tracking.

Websession objects are associated with requests, and you can
attach websession-variables to them to add state to a session.

Robert P. Goldman AllegroServe and WebActions



Introduction
AllegroServe
Web actions
Conclusion

Application flow

AllegroServe alone doesn’t capture the high-level structure of
a web application.

Typically move through a web application from page to page in
a regular way.
Would like to see this captured and made visible.
Instead, each page’s code has to have gotos in it.

Web actions projects provide a high-level map that makes the
structure of an application visible:

Simple maps associate symbolic names with particular pages.
Action functions can direct the session accordingly.
Extended maps can have simple conditional logic — e.g., to do
this action you must undergo a login check, then can proceed.

Robert P. Goldman AllegroServe and WebActions



Introduction
AllegroServe
Web actions
Conclusion

Things I’d like to see

Why aren’t session variables slots? Why don’t they have
accessors?

I have half-baked implementation of this in my own macros.

More help with the client side.

Provide login management integrated into web actions. Easy
stuff to get wrong.

Fuse database management into webactions.

Not always obvious where session tracking will fall off.

Robert P. Goldman AllegroServe and WebActions



Introduction
AllegroServe
Web actions
Conclusion

Conclusions

Quick skim over the features of Franz’s web server libraries.

Core AllegroServe available on other lisps — open-sourced;
web actions seems proprietary.

Based on my experiences, web actions provides a number of
useful improvements over AllegroServe alone.

AllegroServe, taken together with ACL’s excellent debugging
facilities, has worked out well for me.

Robert P. Goldman AllegroServe and WebActions


	Introduction
	AllegroServe
	Web actions
	Conclusion

